40 research outputs found

    Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks

    Get PDF
    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information

    A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Get PDF
    Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system

    Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    Get PDF
    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation

    Study on the Context-Aware Middleware for Ubiquitous Greenhouses Using Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) technology is one of the important technologies to implement the ubiquitous society, and it could increase productivity of agricultural and livestock products, and secure transparency of distribution channels if such a WSN technology were successfully applied to the agricultural sector. Middleware, which can connect WSN hardware, applications, and enterprise systems, is required to construct ubiquitous agriculture environment combining WSN technology with agricultural sector applications, but there have been insufficient studies in the field of WSN middleware in the agricultural environment, compared to other industries. This paper proposes a context-aware middleware to efficiently process data collected from ubiquitous greenhouses by applying WSN technology and used to implement combined services through organic connectivity of data. The proposed middleware abstracts heterogeneous sensor nodes to integrate different forms of data, and provides intelligent context-aware, event service, and filtering functions to maximize operability and scalability of the middleware. To evaluate the performance of the middleware, an integrated management system for ubiquitous greenhouses was implemented by applying the proposed middleware to an existing greenhouse, and it was tested by measuring the level of load through CPU usage and the response time for users’ requests when the system is working

    Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4–MMP1 axis

    Get PDF
    Hepatocellular carcinoma (HCC) is developed by multiple steps accompanying progressive alterations of gene expression, which leads to increased cell proliferation and malignancy. Although environmental factors and intracellular signaling pathways that are critical for HCC progression have been identified, gene expression changes and the related genetic factors contributing to HCC pathogenesis are still insufficiently understood. In this study, we identify a transcriptional repressor Capicua/CIC as a suppressor of HCC progression and a potential therapeutic target. Expression of CIC is posttranscriptionally reduced in HCC cells. CIC levels are correlated with survival rates in patients with HCC. CIC overexpression suppresses HCC cell proliferation and invasion, whereas loss of CIC exerts opposite effects in vivo as well as in vitro. The levels of PEA3 group genes, the best-known CIC target genes, are correlated with lethality in patients with HCC. Among the PEA3 group genes, ETV4 is the most significantly upregulated gene in CIC-deficient HCC cells, consequently promoting HCC progression. Furthermore, ETV4 induces expression of MMP1, the MMP gene highly relevant to HCC progression, in HCC cells, and knockdown of MMP1 completely blocks the CIC deficiency-induced HCC cell proliferation and invasion. CONCLUSION: Our study demonstrates that the CIC-ETV4-MMP1 axis is a novel regulatory module controlling HCC progression. This article is protected by copyright. All rights reserved.113sciescopu

    Bupivacaine Induced Cardiac Toxicity Mimicking an Acute Non-ST Segment Elevation Myocardial Infarction

    Get PDF
    Bupivacaine is widely used as a local anesthetic. Central nervous system (CNS) and cardiovascular toxicity are well known side effects. However, there has been no report of bupivacaine-induced myocardial injury. We present a case of bupivacaine cardiac toxicity mimicking an acute non-ST segment elevation myocardial infarction, which was eventually diagnosed as bupivacaine-induced cardiac toxicity without CNS toxicity. As soon as a healthy young woman at a private clinic was given a spinal anesthesia of 6 mg bupivacaine for hemorrhoidectomy, she developed arrhythmia and hypotension. She was transferred to our emergency room. There was an accelerated idioventricular rhythm with ST segment depression on electrocardiogram, coarse breathing sounds with rales on whole lung field and a butterfly sign on the chest radiograph. 2D transthoracic echocardiography (TTE) revealed reduced left ventricle systolic ejection fraction (approximately 27%). There was regional wall motion abnormality of the left ventricle on 2D TTE and the cardiac marker was increased. We diagnosed the patient as having acute non-ST segment elevation myocardial infarction but her impaired cardiac function improved gradually. On the seventh day from admission, there was a complete spontaneous recovery of cardiac function, and coronary angiography revealed a normal coronary artery. Therefore, we firmly believe that bupivacaine directly injures the cardiac cell

    Design and Implementation of ICT-Based System for Information Management of Livestock Farm

    No full text
    This paper proposes ICT based system for information management of livestock farm to provide efficiency operation in livestock farm by managing information of livestock farm such as livestock information and environment information and fire information. Proposed system provides optimal breeding environment by monitoring real-time information of livestock farm and manage overall information of livestock such as disease forecasting and estrus detection and delivery time. It is expected to increase productivity and earnings rate in livestock farm by systematically managing livestock information and economically operating livestock farm

    A Study on the Android Based Livestock Vehicle Management System

    No full text
    In domestic livestock industry, economic damages of livestock farmhouses have been increased because the livestock mortality rate grows due to the spread of infectious animal diseases. The main cause of animal disease spread is a lack of systems to manage livestock vehicles transporting livestock or feed etc. This paper proposes a livestock vehicle management system based on Android for solving such a problem. The proposed system could prevent the spread of animal diseases in advance by collecting and analyzing the moving routes and access information of livestock-related vehicles. It could monitor moving routes of the contamination-suspected vehicles that visited a farm where the animal disease broke out. It is expected to prevent the livestock disease spread in advance through prompt initial prevention such as controlling the movement of vehicles by systematically collecting and managing information on vehicles accessing to livestock farmhouses through this system
    corecore